最新消息:网盘下载利器JDownloader--|--发布资讯--|--解压出错.密码问题

Mastering Feature Engineering Principles and Techniques for Data Scientists-P2P

Feature engineering is essential to applied machine learning, but using domain knowledge to strengthen your predictive models can be difficult and expensive. To help fill the information gap on feature engineering, this complete hands-on guide teaches beginning-to-intermediate data scientists how to work with this widely practiced but little discussed topic.

Author Alice Zheng explains common practices and mathematical principles to help engineer features for new data and tasks. If you understand basic machine learning concepts like supervised and unsupervised learning, you’re ready to get started. Not only will you learn how to implement feature engineering in a systematic and principled way, you’ll also learn how to practice better data science.

Mastering Feature Engineering Principles and Techniques for Data Scientists-P2P
English | ISBN: 1491953241 | 2016 | PDF/EPUB/MOBI | 69 pages | 4 MB/5 MB/11 MB


Download uploaded
http://uploaded.net/file/eoz54eku/1491953241.pdf

Download nitroflare
http://nitroflare.com/view/5385F456BDB1263/1491953241.pdf

Download 城通网盘
http://page88.ctfile.com/fs/T7B153261159

Download 百度云
http://pan.baidu.com/s/1o8Radlg

您必须 登录 才能发表评论!

网友最新评论 (1)

  1. 数据科学家需要掌握的特征工程原理和技术 特征工程对于应用机器学习来说是基础的,但是使用域知识来加强你的预测模型既困难成本又高。为了弥补特征工程现有资料的不足,本书将会为初中级数据科学家讲解如何处理这项广泛应用却鲜见讨论的技术。 作者Alic Zheng会讲解常用的练习和数学原理,以帮助工程师分析新数据和任务的特征。如果你理解基本的机器学习概念,如有监督学习和无监督学习,那么你已经准备好学习本书了。你不仅会学习到如何以一种系统化和原理化的方式部署特征工程,并且还会学习如何更好地实践数据科学。
    wilde(特殊组-翻译)11个月前 (06-27)