Lynda – Advanced SQL for Data Scientists |百度网盘|rapidgator|nitroflare
最新消息:网盘下载利器JDownloader--|--发布资讯--|--解压出错.密码问题

Lynda – Advanced SQL for Data Scientists

其他教程 killking 1评论
Lynda - Advanced SQL for Data Scientists

Lynda - Advanced SQL for Data Scientists
Size: 172 MB | Duration: 1h 24m | Video: AVC (.mp4) 1280x720 15&30fps | Audio: AAC 48KHz 2ch
Genre: eLearning | Level: Advanced | Language: English
There is an increasing need for data scientists and analysts to understand relational data stores. Organizations have long used SQL databases to store transactional data as well as business intelligence related data. If you need to work with SQL databases, this course is designed to help you learn how to perform common data science tasks, including finding, exploration, and extraction within relational databases. You can also learn how to prepare data for use in analytics tools such as SAS, R, and Python. The course begins with a brief overview of SQL. Then the five major topics a data scientist should understand when working with relational databases: basic statistics in SQL, data preparation in SQL, advanced filtering and data aggregation, window functions, and preparing data for use with analytics tools.

Topics include:
* Data manipulation
* ANSI standards
* SQL and variations
* Statistical functions in SQL
* String, numeric, and regular expression functions in SQL
* Advanced filtering techniques
* Advanced aggregation techniques
* Windowing functions for working with ordered data sets
* Best practices for preparing data for analytics tools
Lynda - Advanced SQL for Data Scientists
Download 百度云
链接: https://pan.baidu.com/s/1o7OZQWi 密码: 7hdd

您必须 登录 才能发表评论!

网友最新评论 (1)

  1. Lynda - 数据科学家的高级SQL 对能够理解关系型数据存储的数据科学家和分析师的需求不断地在增长。企业长期使用SQL数据库存储交易数据以及商业智能相关数据。如果你需要处理SQL数据库,那边本教程可以帮助你学习如何执行常见的数据科学工作,包括查找、探索以及在关系数据库中提取。你也可以学习如何准备数据用于如SAS、R和Python一类的分析工具。本教程从回顾SQL开始;然后是五个在处理关系型数据库时需要掌握数据科学家掌握的主要内容:SQL中基本的统计、SQL中的数据准备、高级筛选和数据汇总、window函数和准备数据用于分析工具。 主要内容:数据操作;ANSI标准;SQL和变量;SQL中的统计函数;字符、数值和常规表达式;高级过滤技术;高级汇聚技术;用于处理序列化数据集的韩式;用于分析的最佳实践。
    wilde(特殊组-翻译)1年前 (2017-05-23)