最新消息:网盘下载利器JDownloader--|--发布资讯--|--解压出错.密码问题--|--最近盗号猖獗,弱密码的会员尽快改为复杂密码,不要跟别的网站密码一样.

Deep Learning: Face Recognition

其他教程 Goldy 1评论

Deep Learning: Face Recognition Deep Learning: Face Recognition

English | MP4 | AVC 1280×720 | AAC 48KHz 2ch | 1h 25m | 300 MB

Face recognition is used for everything from automatically tagging pictures to unlocking cell phones. And with recent advancements in deep learning, the accuracy of face recognition has improved. In this course, learn how to develop a face recognition system that can detect faces in images, identify the faces, and even modify faces with “digital makeup” like you’ve experienced in popular mobile apps. Find out how to set up a development environment. Discover tools you can leverage for face recognition. See how a machine learning model can be trained to analyze images and identify facial landmarks. Learn the steps involved in coding facial feature detection, representing a face as a set of measurements, and encoding faces. Additionally, learn how to repurpose and adjust pre-existing systems.

Topics include:

  • Detecting faces in images
  • Analyzing a histogram of oriented gradients (HOG)
  • Identifying faces in images
  • Locating facial features in images
  • Coding for face detection
  • Finding lookalikes using face detection
  • Generating face encoding automatically

Password/解压密码-0daydown

Download rapidgator
https://rg.to/file/0813447f97d5cfed48f75eaa2898a77a/deep-learning-face-recognition.rar.html

Download nitroflare
http://nitroflare.com/view/7EEF4C27883BE36/deep-learning-face-recognition.rar

Download 百度云
链接: https://pan.baidu.com/s/13SDlg7uD5QI7Lkn_K3-Dew 提取码: r2up

您必须 登录 才能发表评论!

网友最新评论 (1)

  1. 深度学习:面部识别 面部识别被用于从自动地标记图片到解锁移动电话的各种应用。在最近深度学习的发展中,面部识别的准确度得到了很大的提高。在本教程中,学习如何开发一个可以检查图片中脸部的面部识别系统,识别脸部甚至通过流行的手机应用那样数字化美图修图。了解如何建立一个而开发环境;熟悉用来面部识别的工具。学习一个机器学习模型如何能够被训练分析图片和识别面部特征。学习包含在面部特征识别中的编程步骤,以一套指标呈现面部,并对面部编码。另外,还会学习到对已有系统的调整和赋予新的用途。 主要内容: • 检测图片中的面部 • 分析方向梯度直方图 • 识别图片中的面部 • 定位图片中的面部特征 • 面部识别编码 • 使用面部识别找到相似的 自动生成面部编码
    wilde(特殊组-翻译)1个月前 (10-17)